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This paper investigates the range of validity of the quasiparticle picture by calculation of the temperature 
dependence of the nuclear spin relaxation time T\. According to the simplest application of the quasiparticle 
picture, the electron-phonon interaction should produce a considerable deviation from the weak coupling 
law, T\T—constant. This deviation is not observed experimentally. Moreover, a more modern approach, 
based upon field theoretic techniques, predicts the constancy of T\T and hence restores the agreement 
between theory and experiment. Therefore, it is argued that the quasiparticle picture is a most inappropriate 
description of the effects of the electron-phonon interaction in metals. 

INTRODUCTION 

THE authors of recent papers on tunneling in 
superconducting1 and normal2 metals have indi

cated that the simplest version of the quasiparticle 
picture gives an incorrect description of metallic proper
ties. In particular, this picture grossly falsifies the 
effects of the electron-phonon interaction upon the 
tunneling rate. 

This paper explicitly demonstrates the failure of the 
simple quasiparticle picture for the calculation of the 
nuclear spin-lattice relaxation time T\. Both experi
ment3-8 and the more exact theory presented here indi
cate that the product of T\ and the temperature T 
should be independent of temperature. However, the 
quasiparticle picture predicts a completely spurious 
temperature dependence of the product TiT, 

{Note added in proof. The reader should notice that 
we are here objecting to the simplest version of the 
quasiparticle picture and not to the more sophisticated 
version derived, for example, by Nozieres (see Ref. 13, 
below) with the aid of field theoretic techniques. This 
latter approach leads to results which are essentially 
identical to those presented below.] 

In order to make our point in the simplest possible 
fashion, we neglect all effects of band structure and the 
Coulomb interaction between particles. This neglect is 
justified because the characteristic energy for a Coulomb 
interaction in a metal is of the order a few electron volts 
which corresponds to temperatures of more than 
20 000°K. No important temperature dependence will 
be produced by the Coulomb interaction until the tem
perature reaches these impossibly high levels. 

On the other hand, the characteristic temperature for 
the electron-phonon interaction is the Debye tempera-
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ture which is of the order of 300°K. Therefore, this 
interaction must be included in any calculation of the 
temperature dependence of T\. 

To calculate T\, we follow the conventional9 viewpoint 
that nuclear spin relaxation is produced by processes in 
which an electron scatters from a nucleus and thus 
changes the nuclear spin. This interaction is represented 
by the interaction Hamiltonian 

F=(87r/3)7e7«I-S(r), (1) 

where I is the nuclear spin vector and S(r) is the elec
tronic spin density at the nucleus. A simple golden-rule 
calculation of the transition rate from the nuclear state 
m (energy Em) to the state n (energy En) gives the 
transition rate as: 

Wm 

r d?k r do) r d?k 

J (2w)zJ 2TTJ (2TT (2TT)* 

(k,o>)G>(k',a>')d(Em+co-En-a>'). (2) 

This result is derived in Appendix A. 
The important factors in the transition rate are 

G<(k,u>) and G>(k',co'). They are, respectively, the 
density of electrons (of one spin) with momentum k and 
energy co and the density of states available to an 
electron with momentum k' and energy a/. G>(k',to') can 
also be considered to be a density of holes.10 The factor 
Cmn contains the nuclear matrix elements and since it is 
independent of temperature it is irrelevant to our 
present considerations. Except for this factor, Eq. (2) 
contains the statement that the transition rate is pro
portional to the initial density of electrons, the final 
density of states, and an energy conserving delta 
function. 

Since the nuclear energy difference is quite small, we 
neglect it in all our further considerations. In this way, 

9 C. P. Slichter, Principles of Magnetic Resonance (Harper and 
Row, New York, 1963), pp. 121-126. As in this reference, ye and ye 
are the gyromagnetic ratios of the nucleus and electron spin. We 
differ from this reference in using units in which -h — l. 

10 See Ref. 2 or L. P. Kadanoff and G. Baym, Quantum Statistical 
Mechanics (W. A. Benjamin, Inc., New York, 1962), Chap, 2 for a 
discussion of the meaning of G> and G<. 
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we find that the only temperature dependent term in 
Wmn is the common factor 

r <Pk r d?k' rdu 

J (2T)J (2T)3J 2-K 

X 
r du' 

J 2ir 
)G>(k',o)')8(o)-o)'). (3) 

Since 7 \ is inversely proportional to the transition 
rates, we are necessarily led to conclude that the factor 
(3) contains all the possible temperature*dependence of 
jTf"1. Thus, we write 

r do> r dzk r d3k' 

J (2TYJ (2iryJ (2TT)3 
(4) 

where the factor C is necessarily independent of temper
ature. 

Because the system is in thermodynamic equilibrium, 
the density of states is related to the density of particles 
by the detailed balancing relation 

G<(k,o)) = exp(-o)/kBT)G>(k,o)), (5) 

where JIB is the Boltzmann constant. Equation (5) 
defines a condition for thermodynamic equilibrium for 
the case in which all the energies are measured relative 
to the Fermi energy. This condition is conveniently 
represented by writing G> and G< in terms of the 
spectral weight function A (k,co) as 

where 

G<(k,o)) = f(o))A(k,o)) 

G>(k,a>) = £l-f(o>)-]A(kia>), 

/(co) = [ e x p ( c o / ^ r ) + l ] " 1 . 

(6) 

(7) 

Equation (6) is convenient mainly because A(k,o)) 
satisfies the simple sum rule 

/ 

dco 
-A(k,w) = l> 

2TT 
(8) 

which expresses the completeness of the set of states 
used in calculating G> and GK. 

To obtain a convenient expression for Tr1, we 
substitute (6) into (4) and employ the relationship 

/(«)[!-/(«)]= -**r[a/(«)/aw] 
to write (4) as 

d*k r dzV r dzk r &W 
-CkB / / 

J (2T)ZJ (2TT)3 

do) X 
r do) df(o)) 
/ -—A{k,<*)A{k',o) . (9) 

J (2T)2 do) 

Finally, we notice that the factor df/do) is sharply 

peaked near co=0. Therefore, only particles with ener
gies very close to the Fermi energy contribute ap
preciably to the scatterings which define TV Since the 
electron-phonon interaction produces shifts in the 
single-particle energies which are very much smaller 
than EF, the predominant contributions to the integrals 
in (9) appear for \ek\<^EF and \ek'\<s.EF, where 

€k=(k2/2m)-EF (10) 

is the kinetic energy measured relative to the Fermi 
energy. For this reason, we can make the replacement 
in (9) 

f d?k m r°° mkF r00 

/ — — = — / d€kk~ / dek, (11) 
J (2TT)3 2V*J-BF. 2^ J^ 

where kF= (2mEF)1/2 is the Fermi momentum. 
In this way, we obtain our final expression for Tr1 

(Tjy-^-CkBW 

Here 

fdek f dek
f 

o)2 / — / — 
J 2x J 2x 

X / dwA (k,o>)A (k',w)—r-. (12) 
do) 

No=mkF/2Tr2 (13) 

is the density of states in energy at the edge of the Fermi 
sea for a set of noninteracting fermions. 

All effects of the electron-phonon interaction con
tained in the spectral weight functions A (k,o)). We now 
examine the .behavior of Tf1 by using (a) the free 
electron picture; (b) the quasiparticle picture; and (c) 
the theory of Migdal11 to express A (k,o)). 

FREE-ELECTRON PICTURE 

For noninteracting electrons, 

A (k,oi) — 2w8 (o)— €k). 

Hence, Eq. (12) becomes 

a/(«) 
( r i r j - ^ -cJkW 0)2 / d0)— 

J do) 

(14) 

(15) 

Since / («) goes to 1 at o)= — oo and 0 at co= + oo, the 
free-electron picture predicts 

{T{r)^=CkB{N,)2 (16) 

so that in this picture the product of Ti and T is a 
constant, independent of temperature. 

QUASIPARTICLE PICTURE 

In the simplest version of the quasiparticle picture, 
the electrons are treated in exactly the same manner as 
free particles except that their energy-momentum rela-

11 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958) 
[translation: Soviet Phys.—JETP 7, 996 (1958)]. 
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TEMPERATURE-DEGREES KELVIN 

FIG. 1. Tx versus T in Al. The line describes 7\ T = 1.85 sec - °K. 
The maximum deviation of the data from this straight line is less 
than 5%. 

tion is altered. Instead of writing (14), we write 

il(ft^) = 2w$[«-£(*)], (17) 

where E is the true quasiparticle energy. We substitute 
(17) into (12) and find 

(T1T)-1= -CkB / dE\ No 
J-« L dE J 

de(E)-f df(E) 

dE 
(18) 

Equation (18) may be described by saying that the 
zeroth-order density of states in energy No is replaced 
by the "effective" density of states 

No[de(E)/dE~]. 

In evaluating the effective density of states, we ex
press the total energy E as the sum of kinetic energy e 
and the interaction energy, 2(E). 

E=e+i:(E). (20) 

For the sake of convenience, we calculate the self-energy 
2(E) for the case of an Einstein spectrum in which the 
phonon energy coe is constant and for constant electron-
phonon matrix elements v. Then, a second-order pertur
bation theoretic calculation gives 

S(E) = 2VoJftP / dv>'\ 
J LE+ 

#+/(«') #+i-/(«')n 
- + , (21) 
a/ E—a)e—o)f J 

where (P indicates that the integral is to be evaluated as 
a principal value integral. In (21), 

N= Zexp(a>e/kBT)-1]"1 (22) 
is the equilibrium number of phonons in any momentum 
state. 

We examine Tf~l in two limiting cases: the low-
temperature limit in which o)^>kBT and the high-
temperature limit in which o)e<£.kBT. 

First, in the limit of low temperature, 

iV=0 

/(a>) = l for co<0 

= 0 for a>>0 
and 

2(E) = AV(p/* dcof + 1 . 
J-* LE+a>e-o>' E-co e+o/J 

The only contributions to (18) occur for very small E, 
for which 

2 ( E ) = - i W 
/•" 2E 

! / &>' 

(23) 

(C0e-C0')2 

= - (2WM)£. 
Thus, for small E and low temperatures 

de/dE=l+(2Nrf/u,) 

and (18) implies, 

( T i T ) - ^ ^5C(iVo)2[l+ (2iVo^2/coe)]
2, 

for kBT<Ko)e. (24) 

On the other hand, for very high temperatures the 
2(E) which appears in Tr1 is mostly evaluated for very 
large E. Then the energy denominators which appear in 
2(E) are so very large that 2(E) makes a negli
gible contribution to the effective density of states, 
iV0[l — d2(E)/dE]. In fact, a simple order of magni
tude estimate gives 

(19) (TlT)-^kBC(No)(l+ e(—) — 1 , 
L \kBT/ 0)e J 

for kBT2>ae. (25) 

Therefore, as one progresses from very low tempera
tures to very high temperatures, the quasiparticle pic
ture predicts a change in the slope of the Tr1 versus T 
curve by a factor 

ll + (2NoV*/a,e)J. 

Figure 1 is a plot of experimental Tr1 versus temper
ature curves for high magnetic field measurements in Al. 
Notice that within experimental error T{T is constant. 
That is to say the experiment gives no evidence of the 
change in shape predicted by the quasiparticle picture. 

And the predicted changes in slope are far from small. 
To estimate these, we use Morel and Anderson's12 

calculations of the quantity 

X=2iV>2/W (26) 

In Table I, we list values of X and the characteristic 
12 P. Morel and P. W. Anderson, Phys. Rev. 125,1263 (1962). 
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TABLE I. Comparison of theoretical and experimental values of the ratio {(TiT for T^0D)/(TIT for T<K9D)}. 

M a t e 
rial 

Al 
P b 
N a 
Cu 
Li 

6D 
(°K) 

375* 
96 

160 
343 

High- tempera ture results 
Temper

a ture 
range T\T Refer-
(°K) (°K-sec) ence 

400-930 1.85 ± 5 % 3 
200 0.022 ± 2 0 % 4 
250-450 4.8 ± 1 0 %b 6 
300 1.06 ± 2 0 % 7 
300 45 ± 1 0 %b 6 

Experimental results 

Low- tempera ture results 
Temper

a ture 
range T\T Refer-
(°K) (°K-sec) ence 

1-4.2 1.80 ± 3 % 5, 8 
4.2 0.029 ± 2 0 % 4 

1-4.2 5,1 ± 6 % 5 
1-4.2 1.27 ± 1 0 % 5 
1-4.2 44 ± 5 % 5 

Rat io 
TiT for high T 

TiT for low T 

1.03 ± 6 % 
0.8 ± 3 0 % 
0.94 ± 1 0 % 
0.84 ± 2 0 % 
1.0 ± 1 0 % 

Theoretical results 

Quasiparticle theory 

X 

0.33 * 
0.40 
0.25 
0.20 

Rat io 
TxT for T»0D 

TxT for T«0D 

1.8 
2.0 
1.6 
1.4 

Present theory 
Rat io 

TiT for T»BD 

TIT for T«6D 

» Taken from Ref. 11. 
b In these cases, there is an appreciable magnetic field dependence of T\T even for the high magnetic fields, 2000-9000 G, used in the experiment. This 

field dependence is probably indicative of an extra relaxation process due to impurities in the sample. The highest experimental value of T{T is listed in the 
table because the extra relaxation process can only decrease T\T. The error used is the observed variation of TiT with magnetic field. 

phonon temperature 

Bo^Oie/kB 

which is also listed in this reference. This table also lists 
the quantity (1+A)2 which is the ratio 

TxT for Ty>6D 

TLT for T«6D 

= (1+X)2 (27) 

predicted by the quasiparticle theory. 
Finally, the table gives experimental values of this 

ratio for the highest and lowest temperature regions 
which have been explored. Clearly, there is a real 
disagreement between the quasiparticle theory and ex
periment. The quasiparticle picture predicts a con
siderable temperature dependence for T\T\ the experi
ments indicate no temperature dependence whatsoever 
for this quantity. 

FIELD THEORETIC ANALYSIS 

We can easily recover agreement between theory and 
experiment by using the results of Migdal,11 which are 
believed to be an exact description (to order CO«/-EF) of 
the electron-phonon interaction in normal metals. Ac
cording to Migdal, 

4 ( * ,« ) = • 
r(«) 

[a,-6*-S(a))T+CT(«)/2J 
(28) 

where 2(co) is the self-energy written down previously 
and T(co) is the Kramers-Kronig transform of 2(<o), i.e., 

S(co) = P 
da,' T(cor) 

/ 

«) = 2irfl^/"<fo>' 

(29) 

{6(fi>+u,-<*%N+f(ta')l 

+d(p-<*.-o%N+l-f(fo')l}- (30) 

Notice the relation of (28) to the quasiparticle picture. 
If r(w), which is proportional to the inverse lifetime of 

the single-particle state, is small, then A (&,«) is sharply 
peaked for co close to the quasiparticle energy E(k). The 
failure of the quasiparticle picture is evidenced by the 
fact that even in the case of small T(E), A(p,u>) is not 
2>wh[o)—E(p)~] as in Eq. (17). Instead, 

i4(#,«) = 27r5[co—€~S(co)] 

= {2x/[l--<9 2(£) /d£]}$[co-£(e) ] . (31) 

Thus, even when T (E) is quite small, the simple quasi
particle picture is quite wrong. 

The extra factor (1-dZ/dE)-1 in Eq. (31) is the 
wave function renormalization which has been used by, 
for example, Nozieres13 to refine the simple quasiparticle 
picture. With this refinement, the quasiparticle picture 
will be correct whenever T(E) is small. However, we 
feel that it is simpler as well as more general to work 
directly with the Green's function formulation. In this 
formulation, we need not invoke any statement about 
A(k,u>) being sharply peaked in our calculation of T\~l. 
In particular, the results we are about to derive will be 
valid even when T(oo) is large. 

To calculate Tr1, we notice that the A (k,ca) denned 
by (28) satisfies a sum rule, first derived by Migdal,11 

/ 
-A(k,(a) = l. 

2x 
(32) 

The sum rule (32) is derived by simply performing the e 
integral of the expression (28). In contrast to Eq. (8), 
Eq. (32) is not exact. It is an approximate sum rule 
which is a consequence of the nature of the electron-
phonon interaction. 

To find Tr1, we now simply refer back to Eq. (12). 
We apply the sum rule (32) and find 

(TxT)-l^-CkB{N, 
r c 

o)2 / dta-
df(f*) 

(33) 

or 
(r1r)-1=c*B(^o)2. (34) 

13 P. Nozferes, Le Probleme d N corps (Dunod, Paris, 1963), 
Chap. 4. [translation: Theory of Interacting Fermi Systems (W. A. 
Benjamin, Inc., New York, 1963)]. 
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This result is exactly the same as the weak-coupling 
answer. I t agrees with the experimental conclusion that 
the product T{T is temperature independent. 

Thus, we see that the Migdal approach is preferable 
to the quasiparticle approach. I t is more firmly based 
theoretically. I t leads to much simpler calculations. I ts 
conclusions agree with experiment while the predictions 
of the quasiparticle approach fail badly. 
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APPENDIX. CALCULATION OF Wmn 

We employ second-order time-dependent perturba
tion theory to calculate Wmn, with the interaction 

7 ( / )= (&r /3 )7 .7nS( r ,0 - I (0 , (Al) 

where I(/) is the nuclear spin and S(r,0 is the electronic 
spin density at the nucleus. The result is 

For free electrons in the grand canonical ensemble 

^ ( l O i M D W ) * ^ ) ) 
= W(l')MlW(2')*t(2)> 

+<*t t( l '¥t(2)XlMl)*t t(2 /)>, (A8) 

where 1/= (r ' / )> e t c The second term comes from the 
effect of the indistinguishability of two electrons of 
spin up. When particles of opposite spin are involved, 
this term is lacking, that is 

<vM(i')<Mi)W;hM2)> 
= < ^ t t ( l ' ¥ t ( l ) ) ( ^ t ( 2 ' ) ^ ( 2 ) ) . (A9) 

Equations (A8) and (A9) are only correct when there 
is no interactions between electrons. Thus, for example, 
the existence of a Coulomb interaction between elec
trons invalidate these relations. However, Migdal11 has 
shown that the electron-phonon interaction produces 
only very small corrections to these relations. In par
ticular, when indices are set equal as in (A7) the correc
tions to (A8) and (A9) are of order (o)e/EF)^10~2. 
Therefore, to this order, we can employ (A8) and (A9) 
in evaluating (A7) as 

u . / 8 r \* r F(Em-En) = - [dt'e-^-^-t'W(T,t)M*,t')) 
Wmn=l—M„ I E J dt'(n\Ia(t)\m)(m\Ip(t')\n) 2 J 

X(Sa(t,t)S0(r,t')). (A2) 

Here the ( ) indicate an electronic average in the 
equilibrium state of the electrons alone. 

We assume rotational invariance about any nuclear 
site in the metal. This assumption leads to 

<5 a ( r ,05 f l ( r ,O)=« a i /K5,(r ,05.(r / )>, (A3) 

where Sz is expressible in terms of the usual second 
quantized creation and annihilation operators as 

^ ( r , 0 = K * t t ( r , 0 * t ( r , / ) - - ^ t ( r , 0 ^ ( r , 0 ] . (A4) 

Since 

(m\Ia(t')\n)=ei(E™-En)t'(ni\Ia\n) (AS) 

(A2) may be written as 

/8TT \ 2 

Wmn=( — 7eYn) Z(n\Ia\m)(m\Ia\n)F(Em-En) (A6) 

with 

F(Em-En) 

X(Mr,tW (*,?))• (A10) 

The functions G>(k)o)) and G<(k,u>) which we used in our 
previous analysis are defined for a translationally in
variant system as 

( i M r ^ t W ) ) 

d?k do) 

(2TT)3 2T 
{^ (£,«)**•<«'>-*»<*-«'> (Al l ) 

and 

< ^ t ( r ' / ) ^ t ( r , 0 > 

" / 

dzk do) 
1 

(2TT)3 2TT 

G<(k,a))eik-«~*r •~Tf)-ia)(t~t') (A12) 

Since we are neglecting all effects but those that arise 
from the electron-phonon interaction we can use these 
functions which are appropriate for the translationally 
invariant case. Then, (A 10) becomes 

1 r d*k r d*k' r 

2 J (2TT)37 ( 2 T T W 

do} 

2 T 

=»- idt'tr1 

4J 
XMM-En)(.t-t') 

rdo>' 
X / —G<(k,a)G>(k',a') 

J 2% 

X <hM (r, fl*t (r,<) -**• {tMi (r,0] 

X QM (r, W t ( r / ) - * * t ( r / ) ^ ( r / ) ] > . (A7) 

X2Ttd(w+Em-o>'-En), (A13) 

which is Eq. (2) above. 


